圆柱的课件教案(集锦11篇)。
教案课件是每个老师在开学前需要准备的东西,每个老师都要认真写教案课件。老师在上课时要按照教案课件来实施。“圆柱的课件教案”是一个非常有趣的话题让我们深入了解它,如果您喜欢本网页请收藏它!
圆柱的课件教案(篇1)
1.说内容。《圆柱的体积》这节课选自冀教版六年级数学第12册三单元,主要内容是圆柱体的体积计算公式的推导和应用。
2.教材简析。
这一单元是小学阶段学习几何体知识的最后部分,是几何知识的综合运用。《圆柱的体积》一课,是在学生已经学过了圆面积公式的推导和长方体、正方体的体积公式的基础上进行学习的,学生已经有了把圆拼成近似的长方形的经验,很容易联想到把圆柱切拼成长方体。学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。
3、分析教材的编写思路、结构特点。
为了更好地理解教材,我认真研读了人教版与冀教版两种不同版本的教材:
冀教版教材:教材由过生日的情景图和两个不易直观比较出体积的茶叶桶,呈现了问题情境。接着由“议一议”启发学生猜想怎样计算圆柱体积,在猜想的基础上,小组合作,动手操作,利用手中的圆柱体学具把一个圆柱体等分成16份、32等份拼成新的拼成长方体。然后提出“说一说”引导同学观察讨论:拼成的长方体和圆柱体有什么关系?从而推导出圆柱体的体积计算公式。通过例题1得以简单应用。
人教版教材:教材没有创设生动有趣的问题情境,直接奔入主题猜想怎样计算圆柱体积,直接引导学生利用手中的圆柱体学具,把一个圆柱体等分成16份、32份等新的拼成长方体。引导同学观察讨论:拼成的长方体和圆柱体有什么关系?从而推导出圆柱体的体积计算公式,出示例4巩固应用,出示例5应用公式计算容积。
通过对比分析,发现:从教材内容安排和活动设计上,主导思想是一致的,都非常重视动手操作活动,让学生经历探究圆柱体积公式的全过程,在这些教学活动中,着重以引导学生运用自主学习、合作探究两种学习方式交替进行,让他们真正以课堂主人的身份参与全程,教师只是探究活动的组织者、引导者、合作者。不同的是为实现共同的教学目标引出问题的方式不同,冀教版更考虑学生年龄特点,注重学生学习兴趣的激发,让学生主动的去探究。但殊途同归,最终的学习目标是一致的。
4.说教学目标
基于对教材的理解和分析,我分别从知识、能力、情感与态度三方面拟定了本节课的教学目标:
(1)知识目标:探索并掌握圆柱体积公式,能计算圆柱的体积。
(2)能力目标:经历认识圆柱体积,探索圆柱体积计算公式的过程。
(3)情感与态度目标:在探索圆柱体积的过程中,进一步体会转化的数学思想,体验数学的探索性和挑战性,感受数学结论的确定性。
5、说教学重点和难点:
结合学生的实际情况,我把教学重难点确定为:
教学重点:掌握圆柱的体积计算公式,学会计算圆柱的体积。
因为圆柱的体积计算公式的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑推理能力和空间想象能力,因此,圆柱的体积公式的推导过程是本节课的难点。
圆柱的课件教案(篇2)
【课件出示例3】一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米。)
①请同学们认真的默读题,想想:题目让我们求什么?应该怎么求呢?
②强调“没盖”,“得数保留整百平方厘米。”
③独立计算。
④板演者讲解题思路。(讲清每步算的是什么)
⑤了解“进一法”。
★强调:“这里不能用四舍五入法取近似值。在实际应用中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种求近似数的方法叫做进一法。”
⑥举一反三
师:同学们,老师这里带来了几种不同物体的图片,它们都有一个部分是圆柱。怎样求它们的表面积呢?
【课件出示】
★小结:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活计算。
圆柱的课件教案(篇3)
(一)学情分析
六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。
(二)、选择教法,实践课题。
《新课程标准》指出:数学教学应联系现实生活,使学生从中获得数学学习的积极情感体验,感受数学的力量。同时我紧密结合自己的课题“培养学生自主合作学习能力与学生数学素养的策略研究”、“在数学课上如何激发学生的学习兴趣”。通过教学实践,使学生学会自主学习和小组合作,培养学生的创新精神和小组合作及应用数学意识。因此,在本节课中,我认为运用活动教学形态,多媒体演示形态,采取“引导-合作-自主—探究”的教学方法,使每个学生都能参与到学习中,感受到学习的乐趣,从而突破本课的难点。
圆柱的课件教案(篇4)
你能算出鸡蛋的体积吗?
总之,我认为课堂教学在本质上是学生在教师的引导下主动参与、自主发现与探究、独立思考和不断创新的过程,而不是简单、被动地接受教师和教材提供的现成的观点和结论。这也是诚如古罗马教育家普鲁塔克所说,儿童的心灵不是一个需要添满的罐子,而是一颗需要点燃的火种。因此。在课堂教学中,教师应积极创造条件,引导学生在主动的、探究的、体验的、建构的学习方式中,不断地实现自我超越和自我实现,获得多方面的满足和发展。
圆柱和圆锥单元学习学生易出现的问题:
1.圆柱的侧面积公式与圆柱的体积公式混淆。
圆柱的侧面积公式与圆柱的体积公式,前者是底面的周长×高,后者是底面的面积×高。学生学习了圆柱侧面积计算公式后,大部分学生都能利用圆柱侧面积计算公式进行计算。当学习圆柱的体积计算公式后,有一部分学生可能会与前公式混淆。
2.圆柱的体积公式与圆锥的体积公式混淆,
后者是前者的三分之一(在等底等高条件下),在教圆锥体积公式时,教师虽然用等底等高的圆柱和圆锥进行了演示,把倒满水的圆锥里的水倒在圆柱里,刚好可倒三次,为了加强学生三次,也就是说圆锥的体积是圆满柱体积的三分之一的关系,我演示了三次,还邀请三位学生上台实验。但是在作业中也有一部分学生忘了三分之一。也许是课堂上学习的注意力集中在演示上,也许是我高估了学生,我以为通过这样的几次的实验,学生应该能行,对公式的就一带而过。后来学生们去完成课本及练习中的一些习题,通过这样几个课时下来,孩子们都能较好地掌握。
3.应用公式解决实际能力较差。
本单元的难点是解决等积变形的应用题。例如:一个圆锥形麦堆,底面周长是25.12米,高2.1米,把这些小麦装入底面半径是2米的圆柱形粮囤正好装满,这个粮囤的高是多少?这是比较典型的等积变形题目,学生在处理这题时出现几种:第一种是思路不清,不知道要先求什么(圆锥的底面半径),再求什么(圆锥的体积),接着求什么,(圆柱的底面积),最后求什么(圆柱的高)。第二种是利用公式混乱,上题中牵连到圆的周长、圆锥的体积、圆的面积、圆柱的体积公式。第三种是计算、书写粗心,因为这一题计算繁多,步骤复杂,学生在书写时往往会眼花看错。
在圆柱和圆锥的体积教学目标中,都要求让学生经历“类比猜想—验证说明”的探索其体积计算方法的过程,教材这样要求是基于什么考虑?
我们以圆柱体积的内容安排为例。教材安排了探索圆柱体积计算方法的内容,引导学生经历“类比猜想—验证说明”的探索过程,体会类比、转化等数学思想方法。教材先呈现了“类比猜想”的过程,由于圆柱和长方体、正方体都是直柱体,而且长方体与正方体的体积都等于“底面积×高”,由此可以产生猜想:圆柱的体积计算方法也可能是“底面积×高”。在形成猜想后,教材又引导学生“验证说明”自己的猜想,教材中呈现了两种“验证说明”的方法:一种是用硬币堆成一堆,用堆的过程来说明“底面积×高”计算圆柱体积的道理,这实际上是“积分”思想的渗透;另一种方法是转化思想的渗透,即把圆柱通过“切、拼”转化为长方体,再根据长方体体积的计算方法推导出圆柱体积的计算方法。
要求让学生经历“类比猜想—验证说明”的探索其体积计算方法的过程,首先在于这种过程的重要性。数学发现通常都是在通过类比、归纳等探测性方法进行探测的基础上,获得对有关问题的结论或解决方法的猜想,然后再设法证明或否定猜想,进而达到解决问题的目的.类比、归纳是获得猜想的两个重要的方法.类比是一种合情推理的方式,运用归纳、类比可以帮助人们猜想出结论。当然,通过合情推理得到的猜想还需要进一步证明。在小学阶段不要求给出严格的证明,学生只要能够从不同角度说明其合理性即可,也就是验证说明。
圆柱和圆锥的体积与已学习过的长方体和正方体的体积存在诸多相似点,为实施类比提供了可能。所谓类比,就是由两个对象的某些相同或相似的性质,推断它们在其他性质上也有可能相同或相似的一种推理形式。运用类比法的关键是寻找一个合适的类比对象.在学习长方体和正方体的体积时,学生已经初步理解了体积和容积的含义,掌握了长方体和正方体的体积计算方法,这些知识都是学习圆柱体积的基础,特别是长方体和正方体的体积计算公式“底面积×高”对探索圆柱的体积计算方法有正迁移作用。这就使得圆柱和圆锥的体积学习有了合适的类比对象或者说是类比的基础。
由于圆柱和长方体都是直柱体,长方体的体积可以用“底面积×高”计算,因而我们可以类比猜想圆柱的体积是否也可以用“底面积×高”计算。这是由两个对象的某些相同或相似的性质,推断它们在其他性质上也有可能相同或相似的一种推理形式。同样,圆柱与圆锥体积之间,我们也可做出相近的猜想。
圆柱的课件教案(篇5)
一、说教材。
(一)教材分析:
《圆柱的认识》一节是九年义务教育六年制小学数学教材第十二册二单元的第一小节p10-12。它包括圆柱的高、底面以及其半径、直径,圆柱的特征、圆柱的侧面及其展开图。教材首先从生活中常见的圆柱实物抽象概括出它的几何图形,然后再研究它的特征以及各部分的名称,圆柱的侧面展开图则放在后面。
本节知识是在学生初步认识了圆柱,深入研究并掌握研究立体图形的方法之后呈现的,它是学生进一步研究圆柱的基础知识。
(二)教学目标:
1、认识并能指出圆柱的底面及其半径、直径、高、侧面。
2、认识并绘制圆柱的几何图形。
3、掌握圆柱的特征、能列举生活中的圆柱形物体,并能根据图形名称,再现它的表象。
4、归纳圆柱的特征,圆柱侧面图与圆柱的关系。
5、经历探究过程,体验学习的乐趣,感受数学与生活的密切联系。
(三)教学重难点:
1、圆柱的特征及各部分的名称,圆柱的侧面展开图。
2、圆柱的特征及侧面展开图的运用。
(四)课前准备:
教具:长方体、正方体、圆柱形实物若干,制作投影片。
学具:长方体、正方体、盒子各一个,圆柱模型一个。
二、说教法。
新课标倡导学生主动参与、乐于探究、勇于表达。因此,在教学中,我将采用“生疑——探究——释疑”的方法,积极为学生创设一个问题情境,让学生在问题情境中主动参与、自主探索,合作交流,从而解决问题。
三、说学法。
在学法指导上,我让学生通过观察、摆弄实物,并同长方体、正方体实物对比,来培养学生分析问题、解决问题的能力。
四、说教学程序。
(一)创设情境,激发兴趣。
苏霍姆林斯基说过:“在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者。而在儿童的精神世界中,这种需要特别强烈。”我在本课的导入上,就抓住了儿童的这种思维特点。我先将准备好的长方体、正方体、圆柱实物放在讲桌上,提问:“你们能将这些物体分类吗?”学生会及时回答:“能。可以分成长方体、正方体、圆柱。”
接着我让一名学生上前分类。这时,我不失时机地指出:“像罐头盒、茶叶盒、药瓶这些物体,它们的形状都是圆柱体,我们简称圆柱。”然后,我让学生从学具中找出圆柱,看一看、摸一摸。初步感知圆柱的特征。最后我根据实物抽象概括出圆柱的几何图形。提问:“实物与几何图形有什么区别?”这样将实物与几何图形对比,能帮助学生形成圆柱的概念,并加深认识。
接着,我向学生提出富有挑战性的问题:“以前我们研究了长方体、正方体的特征,你们能自己研究圆柱有哪些特征吗?”这样,学生的学习热情就会被点燃,进入良好的学习状态。
(二)观察操作、探究新知。
数学逻辑性强,教学中要体现循序渐进的原则,注重学生的操作实验。在教学本节知识时,我将为学生创设一个观察、操作、交流的空间,让他们参与知识的形成过程,主动学习。
1、探究圆柱的特征。
我先投影几个问题:
①圆柱有几个面?每个面有什么特征?
②同长方体、正方体比较,圆柱有什么不同的地方?
然后,让学生取出自己的`学具,通过看一看、摸一摸等直观方法,并同长方体、正方体的表面进行对比,研究圆柱的特征。再让同桌的两个同学相互交流探究的结果,做到互相启发。最后指名汇报,并完成板书。提问:“圆柱的高有几条?”最后,让学生画出圆柱的底面半径、直径和圆柱的高,指出它的底面和侧面。加深对圆柱的认识,发展空间观念。
2、探究圆柱侧面的展开图。
我投影问题①:
将圆柱的侧面沿一条高剪开,并把它展开,会得到一个什么图形?
先引导学生猜想,再让学生动手操作,验证自己的猜想,最后指名汇报,总结。
投影问题②:
这个长方形的长和宽与圆柱之间有什么关系?
先让学生四人一组讨论,操作验证,并归纳本组讨论结论。然后分组汇报结果并板书。
提问:“除了会得到长方形,还可能得到什么图形?
“可能得到平行四边形吗?”
(三)尝试运用、激活思维。
为了让学生对知识进一步深化,我精心设计了练习题。我在设计练习时,力争体现出层次性,让每个学生的思维能力在原有的基础上都能得到提高。
1、基本练习。
①辨认圆柱的几何图形。
②测量圆柱实物的底面直径和高。
③一个圆柱高5cm,底面半径2cm,将它的侧面沿高剪开,展开后得到的长方形的面积是多少?
通过这三道题的设计,训练学生的分析、判断能力,培养学生思维的灵活性。
2、拓展练习。
①一个圆柱的高是底面直径的π倍,那么将其侧面展开会得到一个()形。
②一个圆柱的侧面展开得到一个正方形,这个正方形的边长是6.28cm,这个圆柱的高和底面半径分别是多少?
通过这两道题的设计训练学生的思维能力。
3、思考题。
为了让学有余力的学生对学习永远保持旺盛的兴趣,我在每节课上都会设计一道思考题。这节课的题目是:将一个长6.28cm,宽3.14cm的长方形硬纸片做成一个圆柱,有几种做法,它的高和底面半径分别是多少?(接头不算)
此外,练习是要“讲”与“评”上下功夫,重视学生的分析能力和讲解能力训练。
圆柱的课件教案(篇6)
教学内容:教科书第10—12页圆柱的认识,练习二的第1—4题.
教学目标:
1、借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。
2、培养学生细致的观察能力和一定的空间想像能力。
3、激发学生学习的兴趣。
教学重点:认识圆柱的特征。
教学难点:看懂圆柱的平面图。
学具:学生每人准备一个圆柱体物品,并将其侧面用白纸包好。剪刀、直尺。教师准备圆柱体、圆柱体侧面展开图、可旋转长圆柱体的长方形。
教学过程:
一、复习
1.已知圆的半径或直径,怎样计算圆的周长?(指名学生回答,使学生熟悉圆的周长公式:C=2πr或C=πd)
2.求下面各圆的周长(教师依次出示题目,然后指名学生回答,其他学生评判答案是否正确)
(1)半径是1米
(2)直径是3厘米
(3)半径是2分米
(4)直径是5分米
二、认识圆柱特征
1.整体感知圆柱
(1)(出示教材第10页中的圆柱形物体)问:这些物体的形状有什么共同特点?
如果把这些圆柱形物体的形状画下来会是什么样子?(出示圆柱的立体图形)像这样的图形叫圆柱。
(2)找找圆柱,请同学找出生活中圆柱形的物体。
2.圆柱的表面
(1)摸摸圆柱。请同学摸摸自己手中圆柱的表面,说说圆柱由哪几部分组成?
(2)指导看书:摸到的上下两个面叫什么?它们的形状大小如何?摸到的圆柱周围的曲面叫什么?(上下两个面叫做底面,它们是完全相同的两个圆。圆柱的曲面叫侧面。)
问:粉笔是圆柱体吗?
3.圆柱的高
(1)教师出示高、矮不事的两个圆柱,提问:哪个圆柱高,哪个圆柱矮?
(2)结合课本回答什么叫圆柱的高。(板书:圆柱两个底面之间的距离叫做高。)
(3)师画一条侧面上的斜线,问:这是圆柱的高吗?为什么?两个底面圆心的连线是高吗?
(4)讨论交流:圆柱的高的特点。
问:圆柱的高有多少条?
归纳小结并板书:圆柱的高有无数条,高的长度都相等。
③深化感知:面对这数不清的高,测量哪一条最为简便?
老师引导学生操作分析,得出测量圆柱边上的这条高最为简便,同时课件上的圆柱体闪烁边上的一条高.
教师出示准备好的贴在木棒上的长方形纸片,将它快速转动,看一看转出来的是什么形状?完成教材第11页的“做一做”
4.圆柱的侧面展开(例2)
(1)动手操作:请同学分小组拿出橡皮、蜡笔、水彩笔、固体胶水等有商标纸的圆柱形实物,分别把商标纸剪开,再打开,观察商标纸的形状.
反馈后讨论:展开后得到长方形和正方形的是怎样剪的?展开后得到平行四边形的是怎样剪的?
┌长方形
板书:沿高剪┤斜着剪:平行四边形
└正方形
强调:我们先研究具有代表性的长方形与圆柱的关系.
(2)寻求发现.展开的长方形的长和宽与圆柱的关系.
①师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。
②学生再观察电脑演示上述过程.(用彩色线条突出圆柱底面周长和高转化成长方形长和宽的过程。)
③同学交流后说出自己的发现:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。
(3)延伸发现.展开的平行四边形的底和高及正方形的边长与圆柱的关系。
①讨论:平行四边形能否通过什么方法转化成长方形?
课件显示:平行四边形通过割补转变成长方形,再还原成圆柱侧面的动画过程。
②想一想:什么情况下圆柱侧面展开是正方形?
③引导小结:不管侧面怎样剪,得到各种图形,都能通过割补的方法转化成长方形.其中正方形是特殊的长方形.你能推导出圆柱体侧面积的计算方法吗?
5.圆柱的侧面积。
(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。
(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?
(学生观察很容易看到这个长方形的面积等于圆柱的侧面积)
(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)
2.侧面积练习:练习二第5题
(1)学生审题,回答下面的问题:
①这两道题分别已知什么,求什么?
②计算结果要注意什么?
(2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。
(3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过过计算得到,在解题前要注意看清题意再列式。
三、巩固练习
1.做第11页“做一做”。
2.做第15页练习二的第3题。
教师行间巡视,对有困难的学生及时辅导。
3.做第15页练习二的第4题。
4.求圆柱的侧面积
(1)C=12厘米,h=12厘米(展开图是什么形状)
(2)d=5分米,h=6分米
(3)r=2米,h是半径的2倍。
四、布置作业
课堂作业:练习二第14题求侧面积部分三道小题。
圆柱的课件教案(篇7)
《圆柱的体积》是在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。根据本节课的性质特点和六年级学生以形象思维为主、空间观念还比较薄弱的特点,我确定本节课的教学目标为:
1、知识与能力:通过推导圆柱体积公式的过程,向学生渗透转化思想,建立空间观念,培养学生判断、推理的能力和迁移能力。
2、过程与方法:结合具体情境和实践活动,理解圆柱体积的含义。探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、情感、态度、价值观:感悟数学知识的内在联系,增强学生应用数学的意识,激发学生的学习兴趣。
教学的重点和难点:
由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来推导,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。
圆柱的课件教案(篇8)
对本节课的教学,我设计了以下几个环节。
(一)复习讨论,为引入新知作准备
1、什么叫做体积?怎样计算长方体的体积?
板书:长方体的体积=底面积x高
2、学习计算圆的面积时,是怎样把圆变换成已学过的图形、再计算面积的?
当学生回答完毕后,用课件再现圆面积的“化曲为直”转换成近似长方形,然后进行推导的过程,让学生领悟到 “把新的知识转换成旧的知识”这样的方法是很重要的方法。
3、出示圆柱,出示几组圆柱体实物(同底等高、同底不等高、等高不等底),引导学生观察比较,老师提出问题:通过观察,你想知道些什么?了解些什么?引导学生产生疑问后,教师这时交待,我们今天要学习的新知识,就能很好地解决这个问题(提示课题)。让学生自行设疑,教师向学生交待学习任务,使学生对新知识产生强烈的求知欲望,从而进入最佳的学习状态。
教师通过展示目标,学生认读目标,这时学生就能清楚地知道了学习的任务和要求,从而把教师的教学目标,转化成了学生的学习目标。使学生带着目标,有目的、有准备地学习下一步的新知识,学生就真正成为学习的主人,使教学变得更加明确具体,可操作、可检测。同时也能激起全体学生参与达标意识,学生的主体地位就充分地显示出来了。
(二)操作演示,探索内化新知
1、设疑:要判断圆柱体积大小,究竟哪个大?哪个小?到底圆柱的体积与什么有关呢?能不能把圆柱转化成我们学过的立体图形来计算它的体积?
2、演示操作,揭示新知。
引导学生观察,沿着圆柱底面直径把圆柱切开,可以得到大小相同的16块。演示给学生看以后,再让学生动手操作,启发学生说出转化成我们熟悉的形体。同时引导学生观察转化前后两种几何形体之间的内在联系,圆柱的体积与长方体的体积有什么关系?圆柱的底面与长方体的底面有什么关系?圆柱的高与长方体的高又有什么关系?从而推导出圆柱体体积计算的公式,最后让学生说一说圆柱体体积计算公式的推导过程。并板书:
圆柱的体积=底面积×高,引导学生用字母表示出来,最后让学生看书质疑。
这部分教学设计意图:根据教材特点,学生的认知过程,充分调动学生的学习热情,激发求知欲望,调动学生的各种感官,完成从演示——观察——操作——比较——归纳——推理的认识过程,让知识在观察、操作、比较中内化,实现感性到理性,由具体到抽象,这种教学方法符合学生的认知规律,有助于突破难点、化解难点。
关于难点的突破,我主要从以下几个方面着手:
(1)引导学生通过观察比较,明确圆柱体的体积与它的底面积和高有关。
(2)运用知识迁移的规律,启发引导,层层深入促进学生在积极的思维中获取新知。
(3)充分利用直观教具,师生互动,通过演示操作,帮助学生找出两种几何形体转化前后的关系。
(4)根据新旧知识的连接点,精心设计讨论内容,分散难点,促进知识的形成。
3、运用。
(1)、做一做:集体订正后,教师提问,这道题已知圆柱的底面积和高,求它的体积,如果不知道圆柱的底面积,那还必须知道什么条件才能求出它的体积?该怎样求?单位不统一怎么办?
(2)出示例6、先由学生自己尝试练习,请一位学生板演,集体讲评时提问学生,在解题时要注意什么?让学生自已来概括总结,通过学生的语言说出:(1)单位要统一(2)求出的是体积要用体积单位。
在掌握了圆柱体积计算的方法之后,安排例6进行尝试练习,这样既可以调动学生的学习积极性和主动性,又可以培养学生学习新知识的能力,同时把所学知识转化为相应的技能。
(四)巩固练习,检验目标
2、完成练习三第1、2题。
已知底面的周长(或半径或直径或底面积)和高,怎样求体积,通过不同条件求圆柱体积的练习,巩固新知,加深对新知识的理解,把所学知识进一步转化为能力,在练习中发展智力,培养优良的思维品质和学习习惯。
3、变式练习:已知圆柱的体积、底面积、求圆柱的高。
这道题的安排是对所学的内容的深化,在掌握基础知识的前提下,培养思维的灵活性,同时深化教学内容,防止思维定势。
4、动手实践:让学生测量自带的圆柱体。
教师提问:如果要知道这个圆柱体积,该用什么方法?让学生说一说是怎样测量的?又是如何计算的?
这道题的设计,一方面培养了学生解决实际问题的能力,另一方面也加深了对圆柱体积计算公式的理解,同时教学知识也和学生的生活实际结合起来,使学生明白,我们所学的数学是身边的数学,是有趣的、有用的数学,从而激发学生的学习兴趣。
(五)总结全课,深化教学目标
结合板书,引导学生说出本课所学内容,我是这样设计的:这节课我们是怎么学会圆柱的体积计算方法的?然后理一理化归思想的运用过程:平行四边形转化成长方形,三角形、梯形转化成平行四边形——圆转化成长方形——圆柱转化成长方体,使学生很好地理解化归思想在数学中的运用。
然后归纳,通过本节课的学习,我们懂得了新知识的得来通过已学知识来解决的,以后希望同学们多动脑,勤思考,在我们的生活中还有好多问题需要利用所学知识来解决的,望同学们能学会运用,善于用转化的思想来武装自己的头脑,思考问题。
圆柱的课件教案(篇9)
(一)学习内容
《义务教育教科书数学》(人教版)六年级下册第21~22页。例3、4教学圆柱表面积的概念,探求表面积的计算方法。学生已经学过长方体、正方体表面积的计算,因此对圆柱表面积概念的理解并不困难。利用已有知识的迁移,联系长方体、正方体的表面积进行类比,认识圆柱的表面积,并在此基础上,引导学生自主探索出圆柱表面积的计算方法,体会转化、变中有不变的数学思想。
(二)核心能力
运用迁移类推的学习方法,通过想象、操作、讨论认识圆柱的表面积及表面积的计算方法,发展空间观念,体会转化、变中有不变等数学思想。
(三)学习目标
1.通过复习旧知,对长方体和正方体表面积知识进行迁移,并结合自己制作的圆柱模型,理解圆柱表面积的含义。
2.利用自制的圆柱,通过想象、操作、讨论等活动,自主探求出圆柱的侧面积和表面积的计算方法,在对比中理清二者的区别,经历知识形成的过程,发展空间观念,并体会转化、变中有不变等数学思想。
3.利用所学知识解决圆柱表面积的相关实际问题,在解决问题的过程中,体会圆柱的广泛应用。
(四)学习重点
圆柱表面积的计算
(五)学习难点
圆柱体侧面积计算方法的推导
(六)配套资源
实施资源:《圆柱的表面积》名师课件、长方体、正方体、圆柱学具
圆柱的课件教案(篇10)
胡**老师带来的一节《圆柱的认识》给我留下很深的印象,她扎实的功底让人佩服,她甜美有力的声音是我所羡慕的,接下来就来说说整节课的一个详细的评价。
一、复习旧知,引入新课
胡老师从长方体和正方体的原有知识进行新课的引课,让学生有话可讲,每个人都能讲出原有知识的点点面面。从而引出圆柱这个图形,因为学生之前对圆柱有一定的了解,知道什么样子的图形是圆柱,只不过没有通过概念的方式进行系统的学习,在学生说出圆柱的相关知识后教师引导学生从学习长方体和正方体的方式方法进行学习。
二、新授新知
1、先从圆柱的构成开始教学,有摸一摸等方式对圆柱进一步的学习,感受到圆柱的底面是圆形的,而圆柱的侧面则是一个弯曲的面,教师适时的引导学生叫做曲面。对于圆柱的两个底面的面积计算是已经学习过的圆的面积计算,本节课就不需要过多的讲解。胡老师在这个环节要求学生以小组的方式进行交流沟通,体现了小组互动的教学方式对教学的重要意义。
接下来就是从学生的观察与发现中找出圆柱的概念,特别强调的是上下一样粗的要求,这样学生就不会搞不清什么样子的图形是圆柱了。这个环节中教师可以用问题“你可以通过什么方式来验证上下两个底面是一样大小?”此时学生就开始验证的过程,有的画线,有的测量,等等方式出现,此时也可采取同桌为小组交流的方式协同合作,胡老师这个地方忽视了这一点。然后是汇报验证的方法和结果,测量直径、滚动圆柱形物体(注意起始点),这样就能等到圆的周长相等,从而得出圆的面积也是相等的。然后以练习题的方式让学生判断哪个图形是圆柱。
2、教学圆柱的高,从两个高低不一的圆柱引出圆柱的高,顺其自然的进行下一个知识点的学习,教师教学高的概念(上底面与下底面之间的距离叫做圆柱的高)。学生回答到圆柱的高有无数条的时候教师这里可以问下学生为什么是无数条?而胡老师这个时候并没有深究。然后就让学生开始画高,学生在画高的时候教师可以适当的进行演示。画好了之后有开始让学生自己测量圆柱的高,此时就出现了圆柱体的平放和竖直放等情况出现,教师及时引导学生什么才是圆柱的高。
教师解释生活中的圆柱体的高,有深、厚、长等。
3、圆柱侧面展开,因为学生准备好了学具,教师在课堂上让学生剪开之后展示,与长方形的面积计算方法开始引导学生解决这个问题,水到渠成。
三、归纳总结
从板书上总结本节课的学习,从认识圆柱体开始,学习了圆柱体的各部分名称以及圆柱的侧面展开,对后面的圆柱的表面积学习打下了深厚的基础。
圆柱的课件教案(篇11)
教学目标
1.使学生初步理解和掌握圆柱的体积计算公式。会用公式计算圆柱的体积,并能应用分式解答一些实际问题。
2.在充分展示体积公式推导过程的基础上,培养学生推理归纳能力和自学能力。
教学重点: 圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。
教学难点:圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。
教 法:启发点拨,归纳总结,直观演示
学 法:自学归纳法,小组交流法
课前准备:课件
教学过程:
一、定向导学(5分)
(一)导学
1.什么叫体积?(指名回答)
生:物体所占空间的大小叫做体积。
师:你学过哪些体积的计算公式?(指名回答)
根据学生的回答,板书:
长方体体积=底面积×高
2.圆面积公式是怎样推导出来的?
生:把一个圆,平均分成数个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径,(根据学生的叙述,边用幻灯片演示。)得到圆面积公式s=2πr。
3.动脑筋想一想,圆柱的体积,能不能转化成你学过的形体,推导出计算圆柱体积的公式?
4、导入
我们已经认识了圆柱体,学会了圆柱体侧面积和表面积的计算,今天研究圆柱的体积。(板书:圆柱的体积)
(二)定向
出示学习目标:
1、理解和掌握圆柱的体积计算公式。
2、会用公式计算圆柱的体积,并能运用公式解答一些实际问题。
二、合作交流(15分)
1.阅读书25页。
2、看书回答:
(1)圆柱体是怎样变成近似长方体的?
(2)切拼成的长方体的体积、底面积和高分别与圆柱体的体积、底面积、高有什么关系?
(3)怎样计算切拼成的长方体体积?为什么 ?用字母怎样表示?
3、小组展评交流结果。
(1)展评题(1)。圆柱体是怎样变成长方体的?把圆柱体底面分成许多相等的扇形(例如分成16份),然后把圆柱切开,拼成一个近似长方体。(教师加以说明,底面扇形平均分的份数越多,拼成的立体图形越接近长方体。)
(2)展评题2。
切拼成的长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱体的底面积,长方体的高相当于圆柱体的高。
(3)展评题3
圆柱体积=底面积×高
v=sh
4、公式检测
学生独立完成书上做一做1、2题。
三、自主学习(5)
1、出示例6
下面这个杯子能不能装下这袋奶
直径8厘米 高10厘米 这袋奶498毫升
2、尝试列式计算.
3、学生展示自学结果。
4、小结
小结:要求圆柱体积,必须知道圆柱的底面积(如果给半径、直径、底面周长,先求出底面积)和高。注意统一单位名称。
四、质疑探究(2)
已知圆柱的底面周长和高又怎样求圆柱的体积?
五、
小结检测
(
13
分)
(一)小结
让学生说出圆柱体积的推导过程,体积公式。
(二)检测
1、把圆柱切开,可拼成一个( ),圆柱的体积等于近似长方体的( ),圆柱的底面积等于( ),圆柱的高等于( ),所以圆柱的体积=( )。
2.圆柱体的底面积3.14平方分米,高40厘米。它的体积是多少?
3.一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?
4 判断正误,对的画“√”,错误的画“×”。
(1)圆柱体的底面积越大,它的体积越大。( )
(2)圆柱体的高越长,它的体积越大。( )
(3)圆柱体的体积与长方体的体积相等。( )
(4)圆柱体的底面直径和高可以相等。( )
5、 一张长方形的纸长6.28分米,宽4分米。用它分别围成两个圆柱体,它们的体积大小一样吗?请你计算一下。
板书设计:
圆柱的体积
圆柱体积=底面积×高
v=sh
75× 90=6750(立方厘米) 杯子的底面积:3.14×(8/2) ×(8/2) ×10=502.4(ml)
答:它的体积是6750立方米。答:这个杯子能装下这袋奶。